CO2Meter.com Revision: | 1.1

Last-Updated: | 1/3/2010

Indoor Air Quality Products -
Author: | Andrew Robinson

Application Note: Interfacing with Arduino over 12C
The Arduino makes an ideal platform for prototyping and data collection with the K series of CO2 sensors.

Electrical Connections

L)
"o (20
SAOURTIWaN
- . 3 a .
md L OUTNPJY

Interfacing with the sensor electrically is easy. Although the sensor runs at 3.3V it is tolerant of 5V logic levels. A
direct electrical connection is possible using the Arduino’s hardware 12C pins as follows:

e Arduino analog input 5 - 12C SCL
e Arduino analog input 4 - 12C SDA

Both the Arduino and CO2 sensor have built-in pull-up resistors.

The sensor will be wired using the 12C terminal in the following drawing:

=
=)
=]
8,
-
uy -
o i'“ 30.48 [1.20"] i
I: e C
AGND,
sumper/switch|Q O Analogue ground
Arar ping [T —
Din3 O AGND, DGND and GO -
oinz o are connected together k=
Din1 §C
Lo}
bin0 DGHD, o
Dightal ground g
o) -
© 2.54 [0.10"] -r":
S, L, 191 [0.075"] UART terminal g
< 2.54 [0.10™] E EF E| =
e, 2t -
a3 [dd=zee £3g2 22112 R
a :
55c33x82834428E23885 n
{i i_o D000 0O0 000 9 fa I
o ooof)o 0000k I
1
emomrT olo o + #x % oo a 04+ 0 (log
see=zkE 5 o|le = 2ed kg boe|CE
n 85733z £ E52%3iq9 2t o
F. f 2 w2 Q o £ .
[=] . E] ER-I- =] [=]
p IDC terminal - g e
. . . 9.53 [0.375" =
3 Main terminal [] 3
p
o 10.16 [0.400"] ol

CO2Meter.com Revision: | 1.1
Last-Updated: | 1/3/2010

Indoor Air Quality Products -
Author: | Andrew Robinson

Software Interface

We will use the built in Wire library to interface with the K30 CO2 sensor. Import it into the project and initialize it in
the setup() routine:

#include <Wire.h>

int co2Addr = 0x68; // This is the default address of the CO02 sensor, 7bits shifted
left.

void setup() {
Serial .begin(9600);
Wire.begin ();
pinMode(13, OUTPUT); // We will use this pin as a read-indicator
Serial .printIn(""What a wonderful day, to read atmospheric CO2 concentrations!™);

b5

Next we will start polling the sensor using the standard 12C sequences, taken from Appendix A of the 12C Com
Guide, available on our website:

Wire_beginTransmission(co2Addr) ;
Wire.send(0x22);
Wire.send(0x00) ;
Wire.send(0x08) ;
Wire.send(0x2A);
Wire.endTransmission();

delay(10);
Wire.requestFrom(co2Addr, 4);

byte i = 0;
byte buffer[4] = {0, 0, 0, O};

while(Wire.available())
buffer[i] = Wire.receive();

i++;

be

From this point it is a simple matter of taking the bytes in the buffer and converting them into a CO2 value. This will
be left as an exercise in the included sample code.

Additional command sequences can be found in the Com Guide however for most applications CO2 reading is all
that will be necessary.

CO2Meter.com Revision: | 1.1

. . Last-Updated: | 1/3/2010
Indoor Air Quality Products -
Author: | Andrew Robinson

Appendix A: Sample Code

// C02 Meter K-series Example Interface
// by Andrew Robinson, CO2 Meter <co2meter.com>

// Talks via 12C to K30/K22/K33/Logger sensors and displays CO2 values
// 12/31/09

#include <Wire.h>

// We will be using the 12C hardware interface on the Arduino in
// combination with the built-in Wire library to interface.

// Arduino analog input 5 - 12C SCL
// Arduino analog input 4 - 12C SDA

/*
In this example we will do a basic read of the CO2 value and checksum verification.
For more advanced applications please see the 12C Comm guide.

*/

int co2Addr = 0x68;
// This i1s the default address of the C02 sensor, 7bits shifted left.

void setup() {
Serial .begin(9600);
Wire_begin ();
pinMode(13, OUTPUT); // We will use this pin as a read-indicator
Serial .printIn(""What a wonderful day, to read atmospheric CO2 concentrations!™);

}

LILLLII111777777IIIIIIIIIIIIISII/I/////////////777/7
// Function : int readC02()

// Returns : CO02 Value upon success, 0 upon checksum failure
// Assumes : - Wire library has been imported successfully.
// - LED is connected to I0 pin 13

// - C02 sensor address is defined In co2 addr

L1717 7777777777/777777/7/77777///77777///7777////7777/7////777/7//7/77
int readCo2()

int co2 value = 0;
// We will store the C02 value inside this variable.

digitalWrite(13, HIGH);
// On most Arduino platforms this pin is used as an indicator light.

L/1117///7777/7///777//7//777
/* Begin Write Sequence */
L1117/ //7777/7////777/7/7///777

Wire_beginTransmission(co2Addr) ;
Wire._send(0x22);
Wire.send(0x00) ;
Wire.send(0x08) ;
Wire.send(0x2A);

CO2Meter.com Revision: | 1.1
Last-Updated: | 1/3/2010

Indoor Air Quality Products -
Author: | Andrew Robinson

Wire._endTransmission();

L1111/ /777/7/////777/7//777
/* End Write Sequence. */
L/111/1//7777/7////777//7//77

/*
We wait 10ms for the sensor to process our command.
The sensors®s primary duties are to accurately
measure CO2 values. Waiting 10ms will ensure the
data is properly written to RAM

*/
delay(10);

L/1777////777/////7777/7/7/
/* Begin Read Sequence */
L1111/ /7777/////777/7//777

/*
Since we requested 2 bytes from the sensor we must
read in 4 bytes. This includes the payload, checksum,
and command status byte.

*/
Wire.requestFrom(co2Addr, 4);

byte 1 = 0;
byte buffer[4] = {0, 0, 0, 0};

/*
Wire.available() is not nessessary. Implementation is obscure but we leave
it in here for portability and to future proof our code

*/

while(Wire.available())

buffer[i] = Wire.receive();
i++;

}

/111177777777 7//77/7/777

/* End Read Sequence */
/11117777777 //7777/7//77

/*
Using some bitwise manipulation we will shift our buffer

into an integer for general consumption
*/

co2 value = 0;

co2 value |= buffer[1l] & OxFF;
co2 value = co2 value << 8;
co2_value |= buffer[2] & OxFF;

byte sum = 0; //Checksum Byte
sum = buffer[0] + buffer[1] + buffer[2]; //Byte addition utilizes overflow

Revision: | 1.1

CO2Meter.com
Last-Updated: | 1/3/2010

Indoor Air Quality Products -
Author: | Andrew Robinson

if(sum == buffer[3])

// Success!
digitalWrite(13, LOW);
return co2 value;

}

else

{

// Failure!

/*
Checksum failure can be due to a number of factors,
fuzzy electrons, sensor busy, etc.

*/

digitalWrite(13, LOW);
return O;

}
}

void loop() {

int co2Value = readC02();
if(co2value > 0)

{
Serial .print(*'CO2 Value: ');

Serial .printiIn(co2value);

}

else

{

}

delay(2000);
bs

Serial .printIn(*'Checksum failed / Communication failure™);

Note: Checksum failures do happen periodically. These can be partially avoided by increasing the delay time
between writing the request packet and polling for a response. However they cannot be eliminated. The
sensor’s primary functions are related to accurately measuring CO2 concentrations and as a side effect
communication is often delayed as crucial, time-sensitive operations are taken place. Plan your code
accordingly. A more advanced application would involve proper retry logic.

